Product Code Database
Example Keywords: playbook -super $19
   » » Wiki: Weyl Transformation
Tag Wiki 'Weyl Transformation'.
Tag

Weyl transformation
 (

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

In theoretical physics, the Weyl transformation, named after German mathematician , is a local rescaling of the :

g_{ab} \rightarrow e^{-2\omega(x)} g_{ab}

which produces another metric in the same . A theory or an expression invariant under this transformation is called conformally invariant, or is said to possess Weyl invariance or Weyl symmetry. The Weyl symmetry is an important in conformal field theory. It is, for example, a symmetry of the . When quantum mechanical effects break the conformal invariance of a theory, it is said to exhibit a conformal anomaly or Weyl anomaly.

The ordinary Levi-Civita connection and associated are not invariant under Weyl transformations. are a class of affine connections that is invariant, although no Weyl connection is individual invariant under Weyl transformations.


Conformal weight
A quantity \varphi has k if, under the Weyl transformation, it transforms via

  \varphi \to \varphi e^{k \omega}.
     

Thus conformally weighted quantities belong to certain ; see also conformal dimension. Let A_\mu be the connection one-form associated to the Levi-Civita connection of g. Introduce a connection that depends also on an initial one-form \partial_\mu\omega via

  B_\mu = A_\mu + \partial_\mu \omega.
     

Then D_\mu \varphi \equiv \partial_\mu \varphi + k B_\mu \varphi is covariant and has conformal weight k - 1.


Formulas
For the transformation
   g_{ab} = f(\phi(x)) \bar{g}_{ab}
     
We can derive the following formulas
\begin{align}
   g^{ab} &= \frac{1}{f(\phi(x))} \bar{g}^{ab}\\
   \sqrt{-g} &= \sqrt{-\bar{g}} f^{D/2} \\
   \Gamma^c_{ab} &= \bar{\Gamma}^c_{ab} + \frac{f'}{2f} \left(\delta^c_b \partial_a \phi + \delta^c_a \partial_b \phi - \bar{g}_{ab} \partial^c \phi \right) \equiv \bar{\Gamma}^c_{ab} + \gamma^c_{ab} \\
    R_{ab} &= \bar{R}_{ab} + \frac{f'' f- f^{\prime 2}}{2f^2} \left((2-D) \partial_a \phi \partial_b \phi - \bar{g}_{ab} \partial^c \phi \partial_c \phi \right) + \frac{f'}{2f} \left((2-D) \bar{\nabla}_a \partial_b \phi - \bar{g}_{ab} \bar{\Box} \phi\right) + \frac{1}{4} \frac{f^{\prime 2}}{f^2} (D-2) \left(\partial_a \phi \partial_b \phi - \bar{g}_{ab} \partial_c \phi \partial^c \phi \right) \\
    R &= \frac{1}{f} \bar{R} + \frac{1-D}{f} \left( \frac{f''f - f^{\prime 2}}{f^2} \partial^c \phi \partial_c \phi + \frac{f'}{f} \bar{\Box} \phi \right) + \frac{1}{4f} \frac{f^{\prime 2}}{f^2} (D-2) (1-D) \partial_c \phi \partial^c \phi
     
\end{align} Note that the Weyl tensor is invariant under a Weyl rescaling.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs